
Using Artifical Neural Networks to
Model Opponents in Texas Hold'em

Aaron Davidson

email: davidson@cs.ualberta.ca

November 28th, 1999

Abstract:

This paper describes a system for predicting an opponent’s next action
in the game of Texas Hold’em, a common Poker variant. Network
performance in a variety of situations is shown, as well as compared to
current opponent modeling systems. A technique for graphical
representation of neural networks is also discussed as a useful tool for
feature discovery.

Keywords: Neural Networks, Poker, Opponent Modeling, Feature
Discovery

CMPUT 499 - Research Project Review

mailto:davidson@cs.ualberta.ca

Fig.1. Context Information used to train the networks.
Boolean values are input as a 0 or 1, Real values as a
real number from 0 to 1.

 # type description
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Real
Real
Real

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Real
Real
Real

Boolean
Boolean
Boolean
Real

Immediate Pot Odds
Bet Ratio: bets/(bets+calls)
Pot Ratio: amount_in / pot_size
Committed in this Round
Bets-To-Call == 0
Bets-To-Call == 1
Bets-To-Call >= 2
Stage == FLOP
Stage == TURN
Stage == RIVER
Last-Bets-To-Call > 0
Last-Action == BET/RAISE
(#players Dealt-In) / 10
(# Active Players) / 10
(# Unacted Players) /10
Flush Possible
Ace on Board
King on Board
(#AKQ on Board) / (# Board Cards)

1. Introduction

The current state of opponent modeling in our
poker project is very crude. Every game played against an
opponent gives us a huge amount of information on how
they play. Currently we remember a few action frequencies
in a very limited context (bets-to-call and game stage). The
context which a player may use to assist in making decisions
is far richer than just those two factors. For instance, the
number of players in the game, the size of the pot, draw
potentials, and their position in the betting are all known to
strongly affect the way a player will behave. By ignoring all
of this context, we are discarding volumes of valuable
opponent information. Different players will have different
sensitivities to particular contexts. The problem we are faced
with is sorting out what factors within all of this data
actually affect a particular player’s decisions.

At the heart of the opponent modeling problem
there are two things that need to be discovered. First, there is
the need to determine what hand a player is holding, based
on their actions during the game. Second, we need to know
what a player will likely do in any given game situation. For
instance, it is valuable to know that if we re-raise a
particular opponent on the turn when they appear to have a
reasonably strong hand, that they will fold rather than call
us down.

Artificial Neural Networks (ANN’s) are well known
for their ability to learn and identify patterns in noisy data.
This paper will show ways in which ANN’s can be used to
enhance a poker playing program.

2. Architecture and Methodology

2.1. Training the Network
In order to predict an opponent’s next action, we

first need some observation data to train the network on. By
logging game contexts and the associated observed actions
from IRC poker games, training data was collected for a
variety of different players. Context data is translated into
an array of real numbers with range 0 to 1. Fig. 1. shows a
table of the contextual information used. The numbers
correspond to the input node in the network.

This data is then fed into a standard feed forward
ANN (also known as a multilayer perceptron) with a four-
node hidden layer and three output nodes. The sigmoid
activation function was used for all nodes in the network.
Each of the three output nodes represents the network’s
prediction that an opponent will fold, call, or raise

respectively. An output node can give a real value from 0 to
1, so by normalizing the output nodes, we are given a ready
to use probability distribution (known in our existing poker
system as the “Probability Triple” data structure). By
training the network on all of our data, and using back-
propagation to perform a gradient descent on the connection
weights in the network, the network begins to successfully
discover the importance of each input feature with regards
to the opponent’s decision process.

2.2. Training Problems
This process is subject to all of the common

problems which face hill climbing algorithms. I used three
techniques to battle these potential traps.

To prevent wild oscillations caused by overshooting
an optimum configuration, the learning rate is set after each
training cycle to either the default rate (0.4), or to the average
error, depending on which is smaller. Thus, as the network
converges, the error drops, and so does the learning rate.
This has the effect of slowing the decent and getting a
smoother convergence.

To avoid getting stuck in local peaks, momentum in
the weights allows the system to surpass small obstacles. For
more difficult obstacles such as plateaus and severe local
peaks I used a technique I call selective simulated annealing.
When a simple test determines that the learning has stalled, a
corruption signal is sent through the network that randomly
jostles the weights a little. This is usually an effective method
to nudge the network out of stasis.

One final important thing to note is that preflop
actions were filtered from the training data. By filtering

-1-

+---+-------+-------+-------+ +-------+
| * | F | C | R | | FREQ |
+---+-------+-------+-------+ +-------+
| F | 0.13 | 0.0030| 0.0030| | 13.6% |
+---+-------+-------+-------+ +-------+
| C | 0.0 | 0.584 | 0.033 | | 61.8% |
+---+-------+-------+-------+ +-------+
| R | 0.0 | 0.105 | 0.141 | | 24.7% |
+---+-------+-------+-------+ +-------+
+---+-------+-------+-------+ +-------+
| % | 13.0% | 69.3% | 17.7% | | 85.6 |
+---+-------+-------+-------+ +-------+

Total Squared Error = 0.2477

Fig. 2. A Typical Confusion Matrix

preflop observations out of the training data and training
only on postflop observations, the accuracy of the networks
skyrocketed from an average range of 55-70% to 75-90%.
This is probably due to the fact that preflop play has a much
different style than postflop play, and thus hindered the
learning process by forcing generalizations which could
cover both stages of the game. Preflop actions are also much
more difficult to predict since far less information is
available than is in the postflop stage of the game.

2.3. Determining Accuracy and Average Error
Accuracy is determined by running each item in the

test set through the network, and comparing the output with
the correct result. If the node with the maximum value is the
correct node, then this is treated as a successful
identification. The error in the network is calculated as the
average squared difference between the output and the
answer.

A useful way to view the accuracy of a network is
through a confusion matrix as shown in Fig. 2. Columns
F,C,R represent the proportions in which the network
predicted Fold, Call, or Raise. The F,C,R rows show the
proportions of times the opponent actually Folded, Called,
or Raised. The diagonal, then, is occurrences where the
network predicted an action which was correct. All of the
values in the 9x9 matrix sum to one. The FREQ column
displays the percentages of actions for the player, and the
bottom row shows the percentages for each prediction. The
bottom left cell gives the percentage sum of the diagonal
which is the overall success rate.

2.4. Constructing a Probability Triple
By normalizing the three output values of the neural

network, a probability triple is ready for use. The resulting
distribution represents the network’s degree of belief that a
player will take a certain action. If we have also calculated a
confusion matrix, then it can also be used to bias the triple

further. For instance, if the triple given by the network is
{0.85,0.10,0.05} we will most likely choose ‘fold’ as the
predicted action. However, we may be concerned from the
confusion matrix that our network predicts folding when the
player actually raises a significant portion of the time. This is
discovered by examining the 'F' column. By adding the two
triples (or performing some other operation which biases the
distribution appropriately) we can get a new triple which
represents a more conservative prediction. This new
distribution is now biased by our knowledge that the
network makes certain types of mistakes.

2.5. Graphical Representation of a Network.
As part of the Java based ANN class structure, the

ability to graphically display the ANN was an easy addition.
By visually displaying the entire network, debugging was
greatly facilitated. Spotting a problem is much easier with a
figure than dumping an array of weights to a terminal. Even
more importantly, the network diagrams make it easy to see
how the network changes over time and to clearly pick out
the dominant weights and nodes. To some extent, it is even
possible to see how the network works by looking at the
relative sizes and direction (red is negative, black is positive)
of the weights.

Fig. 3 shows a neural net diagram before training
has occurred. All weights are randomly chosen values from
-0.5 to 0.5. The square nodes at the top are the inputs, and the
outputs are the circular nodes at the bottom. The number
printed beside each node is that node’s bias value (an overall
weight for the node itself). The current input is shown by
filling in an input node with black. A black square has a
value of one, a white square is 0, and a partially filled square
represents a real value between 0 and 1. The numbers
printed above each input node correspond to the inputs
listed in Fig. 1.

2.6. Baseline Comparisons

Fig. 3. A Neural Net before training.

-2-

218
250
1323
237
325
90
86

361
217
615
116
109
322
138

63.43
52.07
58.21
56.03
55.05
51.24
65.22

69.53
64.06
72.20
72.41
73.39
70.19
80.43

90.03
75.58
80.00
75.86
82.57
82.61
81.16

-0.017
 0.1314
-0.076
-0.078
 0.1267
 0.1660
-0.138

 A B I II III sb/h

Fig. 4. Seven different players trained and predicted.
 A) Number of training examples
 B) Number of testing examples
 I) Regulur opponent modeling accuracy
 II) Enhanced opponent modeling accuracy
 III) Neural Net Accuracy

To have a standard with which to compare the
networks to, two simple predictors were created. The
baseline predictor is identical to the opponent modeling
used in Poki and Loki. Frequencies of an opponent’s actions
are stored in 12 different situations (combinations of the
game stage and the number of bets the opponent had to call).
The most frequent action in a given situation is chosen by the
predictor as the action.

After studying the neural network’s for identified
significant features, I wrote a fancier version of the simple
predictor which had a larger context set (stage, bets-to-call,
last-bets-to-call, last-action).

3. Experimental Results

3.1. Static Opponent Modeling.
The standard test of the network’s abilities is to take

a stored file of training data and train the network on it. Next
a separate file (of the same opponent in different games) is
used to test the network’s accuracy. It is important to use a

separate set of training data and testing data. It is the only
way to ensure that the network has learned to generalize
from the training data. Without a test on separate data we
cannot be sure that the network has not over-fit the data,
essentially becoming a fancy look-up table.

Fig. 4. shows a chart of the results from seven
different players of varying strengths. The last column
‘sb/h’ gives the player’s IRC small-bets-per-hand statistic
which is a simple measure of how strong they are. The
simple predictor averaged 57% accuracy, the advanced
predictor averaged 71% accuracy, and the trained neural
networks accurately predicted 81% of a player’s actions on
average.

Fig. 5. Shows how the network’s error and accuracy
change after each training cycle (in one cycle the network is
trained once on each training example). The accuracy
typically improves in three steps (this is shown even more
dramatically in Fig. 9.). It first learns to always choose the
most frequent action overall. After it plateaus for a while, it
eventually figures out how to make a distinction between
two of the most common actions. Another plateau ensues
after which a third distinction becomes possible and the
network can recognize common situations for all three

Fig.7. A Network trained by composite data,
(Shown successfully predicting a fold)

Fig. 5. A Typical Training Curve for
a Static Opponent Modeling Problem.

Fig.6. A Network after being trained on an
opponent. (Shown correctly predicting a call)

-3-

+---+-------+-------+-------+ +-------+
| * | F | C | R | | FREQ |
+---+-------+-------+-------+ +-------+
| F | 0.159 | 0.0070| 0.0 | | 16.7% |
+---+-------+-------+-------+ +-------+
| C | 0.0 | 0.63 | 0.014 | | 64.5% |
+---+-------+-------+-------+ +-------+
| R | 0.0 | 0.13 | 0.058 | | 18.8% |
+---+-------+-------+-------+ +-------+
+---+-------+-------+-------+ +-------+
| % | 15.9% | 76.8% | 7.2% | | 84.78 |
+---+-------+-------+-------+ +-------+

Total Squared Error = 0.2647

Fig. 8. A Confusion matrix of the composite
network predicting a new player.

opponent modeling with action frequencies (using just these
factors) is flawed. If action frequencies were based instead
on the more important factors (such as the last action), we
could reweight opponent weight tables based on
unanticipated actions. If we have an 85% expectation that a
player will call, but they then raise we should be concerned
that they have an unusually strong hand.

3.3. Dynamic Opponent Modeling: Tracking a Moving
Target

All modeling done for this project was done offline
(using opponent data collected from IRC Poker games). To
simulate an online learning situation an experiment was set
up where new observations were slowly added to the data
set and the accuracy was determined by the successes in
predicting only the most recent actions.

The graph shown in Fig 10. reveals the network’s
struggle to keep on a moving target, but it manages. The
curves are much more noisy, with sudden spikes where
accuracy plummets for a brief moment. Overall, the
network manages to do fairly well. After 400 cycles, the
error takes a sudden drop of roughly 10%. It is possible that
at this time the network has finally figured out some new
factor successful in predicting the actions.

A big problem faced with any opponent modeling
system is responding to sophisticated players who rapidly
change their style of play to avoid being modeled. One way
this can be dealt with is by training not one network per
player, but several. All networks compete to be used, and
are scored on their accuracy in predicting the opponent’s
most recent actions. The competing networks are trained in
different ways. Some are trained with a full history, some
with just recent events, others with a balanced mixture. A
system such as this should give us the most accurate model
possible at any given time.

Fig. 9. Error and Accuracy during the training
of a composite network.

Fig. 10. Starting from a random neural network and
training and testing with dynamically changing data.

actions.

3.2. Generalized Opponent Modeling
As an experiment, a 1397-item training set was

created from six different player files to create a sort of
‘default’ player training set. To get a broad range, the set
included weak players, moderate players and strong
players. After just 25 training iterations, the network was
able to correctly predict 117 of the 138 (85%) actions of a
seventh player whose data was not included in the
composite network. Further iterations yielded little further
improvements. Fig. 7 shows the final network. Note that a
few input features have relatively strong influences, and that
others have virtually no influence at all.

By viewing a trained network in this way we can
easily spot what game features are highly correlated with an
opponent’s actions. From observations of many different
player’s networks, it appears that the current stage of the
game, and to some extent the bets-to-call are only minor
factors. This evidence suggests that the current method of

-4-

4. Discussion

4.1. Future Work
The next step will be implementing a real-time

online modeling system. The first important consideration is
the amount of time it takes to get an accurate net. Since
much of the time in a poker game is spent waiting while
other players in the game make their actions, a low priority
background thread can train networks for the players
currently in the game. A default network can also be trained
on all opponents to get a reasonable default model. The
default model can be used until enough observations have
been made to train a dedicated net for a player.

Once we have an accurate model of our opponents,
what can we then do with this model? One possibility
would be to run a series of simulations as is done in the
current poker system. Instead of using our own betting
strategy for simulating the opponents, we can now use our
accurate networks. This should yield much more accurate
results. For instance, if we have 85% accuracy on a player,
we will be able to simulate with high certainty whether or
not our bluff will be called or not by that player.

I am confident that the accuracy of the neural nets
can be much improved upon. In the 19 input nodes used,
there was very little board information, field aggressiveness
data, positional information, and dozens of other potential
featues. There are also many techniques for building better
networks and for training them more effectively, which I
have not yet tried. Future enhancements could improve
these network’s accuracy even further.

4.2. Action Frequencies V.S. Neural Networks
Obviously table based action-frequency predictors

can do a reasonable job of predicting the opponent. The
enhanced version which I wrote for this project achieved
71% accuracy on average and it could most probably be
enhanced to approach 80% by continuing work on it. Tables
have a huge speed advantage over neural networks — they
require an insignificant amount of processing time.
However, neural networks have a mass of developmental
advantages over tables. The more context features we wish
to add to a table, the more work must be done to properly
combine all of the table entries when predicting things. First
of all, the order in which things are stored matters. The
tables must be organized from most significant and general
features to the most specific. The more features, the more
observations are required to fill the table with enough data
to make any inferences. It can be a difficult task to combine
the table entries in a way which properly uses both general
course-grained information and specific fine-grained

observations.
Neural nets on the other hand can be extended with

more context features effortlessly,, the order does not
matter, and the network can automatically generalize from a
few observations as well as handle specific cases. Neural
Networks handle all of the R&D involved in constructing
tables.

4.3. Conclusion
Neural Networks have proven themselves to be a

useful way to model poker players. These simple ANN’s
were able to predict opponent actions at significantly higher
accuracy than the existing opponent modeling system.
ANN’s have the added benefit of being a useful tool for
discovering the relative importance of different input
features. By examining ANN’s, a better action frequency
based predictor was created.

5. Acknowledgements

I would like to thank Markian Hlynka for his help in
debugging the back propagation algorithm and answering
so many of my ANN questions. And thanks to Darse
Billings for finding the pot-odds bug.

6. References

D. Billings, D. Papp, J. Schaeffer and D. Szafron, Opponent

Modeling in Poker, 1998. AAAI, pp.493-499

M. Hlynka. A Framework for an Automated Neural Network
Designer using Evolutionary Algorithms. 1997.

S. Russel, and P. Norvig. Artificial Intelligence: A Modern
Approach. 1995. Prentice-Hall, New Jersey. pp. 563-596.

-5-

